

NEWG

Network & Engineering Working Group

Engineering Data File [EDF] Format(s)

What is required?

- We need some 100 parameters 😊
- Each station has to store:
 - A set of parameters COMMON to all stations
 A set of parameters SPECIFIC to few stations
 (SR620 or ET or HP..)
 - A set of parameters UNIQUE to a single station (Special Equipment ..)
- We need high flexibility:
 - o Easy add-on of new parameters, ideas, instruments ...
 - o Must not require any new effort at non-involved stations
 - o Must allow for continuous use of ALL data of FULL history ...
- We need easy implementation at the stations:
 - No tricky formatting;
 - o No special treatments, lines with 1000 characters, no lots of Zeros
 - o Flexible upgrades / changes / additions

How to establish such a system? A possible idea:

- Step 1: Define a Setup-File: Assigns a UNIQUE number to EACH parameter:
 - o Maintained centrally, by a single person, or by the WG;
 - o Assigns a number (e.g. 1-1000) for any parameter;
- Step 2: Store PAIRS in EDF: #, parameter, #, parameter, #, parameter,
 - Standard ASCII file; all values separated by commas (CSV format), or separated by semicolons (#,value; #, value; #, value; etc)
 - o All values in FREE numerical format (only fixed units, like ps, Volts etc.)
 - o Can be in ANY order;
 - o Can be changed at ANY time;
 - Is extremely flexible;
 - o Can be read by simple programs, which extract desired parameters;
 - o Read programs can be DOS (C, Fortran), Windows (Excel etc);
 - Simple plot programs, simple Auto-Check Programs;
 - Each station needs only storage place for its OWN parameters

NEWG

Example for the UNIQUE EDF FORMAT File:

1	Date of measurement
2	Time of measurement
3	Station number
4-6	Met values
7	Mean Cal value
8	RMS
9	# of raw measurements
10	# of remaining measurements (e.g. after Sigma iteration)
20	Skew
21	Peak-Mean
22	Kurtosis
• • •	
50	Laser data
70	Epoch timing data
100	SR620 Setup items
	•
120	HP Setup items
130	Dassault Setup items
 200-3	Station specifics
200 2	Station specifies
999	Place for many variables

NEWG

Network & Engineering Working Group

Example for the Engineering Data File (Blanks only for readability):

1, 2003:04:11, 2, 17:59:59, 3, 7839, 4, 1013.25, 5, -1.17, 6, 99.9,7, 123456, ...
1, 2003:04:11, 2, 18:59:59, 3, 7839, 4, 1014.257, 5, 22.3, 6, 100.000,7, 123457, ...

Advantages

- Relatively simple to implement at each station:
 - o Just store your values, together with the assigned number, in ANY order ...
 - Use a common simple program to extract the desired values; than make a plot using any standard programs (ppt, xls, etc.); freely available from WG
 - o Or use a simple Excel Script to extract and plot all desired values; such scripts can be made also available by the WG (Van?)
- The OWN EDF can be used at each station:
 - o To check automatically ALL values once per day:
 - Any limits exceeded ?
 - Any drifts detected?
 - Any jumps in any time series?
 - o In Case: Automatically set some alarm, send yourself an Email etc.
- The OWN EDF can be used also by some CENTRAL CHECKING PROGRAMS:
 - o It is sent automatically each day to the center, overwriting the old file there; or just send some daily file, to be concatenated at the centre
 - o It is also checked automatically there for consistency, jumps, drifts
- The OWN EDF could be used also by any ANALYSIS CENTER:
 - o Everybody has access to the files;
 - o Everybody can use the programs to check for drifts, jumps etc.;
 - o It is easy for any analysis group to cross-correlate then any events, drifts ...
- ALL EDFs could be downloaded by ANYBODY, to make comparisons:
 - o I would like to cross-check all other stations using SR620
 - What is the effect at Station X, going from 35 to 10 ps laser pulses?
 - o Etc. etc.